SYNTHESIS AND CONVERSIONS OF C-(ALKYN-1-YL)- 8-D-GLUCOPYRANOSIDES

Jean-Marc Lancelin, Paul Henri Amvam Zollo, and Pierre Sinaÿ*

Laboratoire de Biochimie Structurale, E.R.A. 739, U.E.R. de Sciences

Fondamentales et Appliquées, 45046 Orléans Cédex, France

<u>Summary</u>: A stereospecific synthesis of C-(alkyn-1-yl)- β -D-glucopyranosides from 2,3,4,6-tetrabenzyl-alucopyranolactone is reported.

Although frantic efforts are currently devoted to the direct formation of C-C-bonds at the anomeric center of carbohydrates 1 , the following stereospecific transformation has not been described to the best of our knowledge 2 :

As part of an ongoing program on the synthesis of natural products from carbohydrates, such a reaction was sought for during the study of model reactions for the construction of the "west" fragment of ambruticin 3 , a unique antifungal antibiotic.We anticipated that C-(alkyn-1-yl)- β -D-glucopyranosides would be immediate precursors of substituted trans C-vinyl- β -D-glucopyranosides, and would furthermore be versatile intermediates for the preparation of a variety of β -D-C-glucopyranosides. We wish to report a stereospecific entry to such derivatives.

Ethynyl compounds have been shown to react with sugar lactones to give acetylenic lactols⁴. On the other hand, triethylsilane with a Lewis acid is known to reduce acetals⁵, a property which has been used for the highly stereoselective synthesis of C-alkyl- β -D-glucopyranosides^{1b}. In a typical exemple, the treatment of 2,3,4,6-tetrabenzylglucopyranolactone $\underline{1}^6$ with the anion (1.6 M n-BuLi, THF) of 1-benzyloxy-3-butyne⁷ (THF, -78° \rightarrow -40°, 1.5 h) gave a quantitative yield of the hemiketal $\underline{2}^{8,9}$, which was stereospecifically reduced (Et₃SiH, BF₃:Et₂O in MeCN-CH₂Cl₂,17:3, v/v, -40°, 1h) into the β -D-C-glucoside $\underline{3}^{10}$

(72%), $[\alpha]_D$ 0°. No stereoisomer was detected by chromatographic means. The stereochemical control is achieved by axially oriented addition of hydride on the oxonium ion 1b. The ethynyl derivative $\underline{\mathbf{3}}$ was transformed 12 (LiAlH₄, DME, 90°, 12h) into the E C-vinyl- β -D-glucoside $\underline{\mathbf{4}}$ (57%), m.p. 64-65°, $[\alpha]_D$ 0°; 1H-N.M.R. (90 MHz) : $\mathbf{J}_{7,8}$ 15.5Hz. For comparison purposes, $\underline{\mathbf{3}}$ was reduced (H₂, Lindlar catalyst) to provide the Z isomer $\underline{\mathbf{5}}$ (75%), $[\alpha]_D + 42^\circ$; 1H-N.M.R. (90MHz): $\mathbf{J}_{7,8}$ 10.5Hz.

This methodology has been applied to the synthesis of a model fragment of ambruticin , as depicted in the following scheme 13 :

$$\frac{1}{3 \text{ steps}} \quad \frac{1}{80} \quad \frac{0B}{80} \quad \frac{3 \text{ steps}}{7}$$

The racemic dibromoolefin $\underline{\mathbf{6}}$ was transformed $\underline{\mathbf{in}}$ situ into the corresponding lithio-alkynyl (n-BuLi, THF, -85° for 1h,then 20° for 1h) and the three-step procedure provided compound $\underline{\mathbf{7}}$ (40% from $\underline{\mathbf{6}}$) as a mixture of two diastereoisomers which were not separated.

 $C-(Alkyn-1-yl)-\beta-D-glucopyranosides$ are immediate precursors of $C-alkyl-\beta-D-glucopyranosides$, compounds of potential utility as new forms of nonionic detergents, used for the solubilization and isolation of membrane proteins and for stabilization and activation of enzymes 14 . The analog of octyl- β -D-glucopyranoside 14 has been prepared as follows:

$$\frac{1}{2 \text{ steps}}$$

$$\frac{Br}{B0}$$

$$\frac{CH_{2})_{5}CH_{3}}{B0}$$

$$\frac{CH_{2})_{5}CH_{3}}{B0}$$

$$\frac{CH_{2})_{5}CH_{3}}{H0}$$

$$\frac{H_{2}, Pd/C}{H0}$$

$$\frac{9}{H0}$$

 $\underline{\mathbf{8}}$ (67% from $\underline{\mathbf{1}}$), [α] 0°; $\underline{\mathbf{9}}$ (93%), [α] -14°. $\underline{\mathbf{9}}$ was characterized as a crystalline tetraacetate (96%), m.p. 90° (hexane), [α] -15°. Finally, the procedure is applicable to disaccharides, as exemplified by the following scheme 16 :

Laclose
$$\frac{\text{Ref. }16}{\text{B0}}$$
 $\frac{\text{B0}}{\text{OB}}$ $\frac{\text{OB}}{\text{OB}}$ $\frac{\text{B0}}{\text{OB}}$ $\frac{3 \text{ steps}}{\text{OB}}$ $\frac{\text{H0}}{\text{H0}}$ $\frac{\text{OH}}{\text{OH}}$ $\frac{\text{H0}}{\text{OH}}$ $\frac{\text{OH}}{\text{OH}}$ $\frac{\text{H0}}{\text{OH}}$

<u>11</u> (50% from <u>10</u>), $[\alpha]_{D}$ -16°.

The reduction of the hemiketal is thus mild enough to avoid a possible reductive cleavage of the interglycosidic linkage 15 . The possibility of forming, with such C-alkyl- β -D-glycosides,monodisperse populations of micelles will be investigated.

References and Notes

- 1. a) S. Hanessian and A.G. Pernet, <u>Adv.Carbohydr.Chem.Biochem.,33</u>, 111 (1976); b) M.D. Lewis, J.K. Cha and Y.Kishi, <u>J.Am.Chem.Soc.</u>, <u>104</u>, 4976 (1982) and references cited therein; c) R.M. Williams and A.O. Stewart, <u>Tetrahedron Lett.</u>, <u>24</u>, 2715 (1983) and references cited therein.
- 2. We restrict ourselves in this piece of work to <u>direct</u> anchoring of the integrate appropriate unsaturated appendage at the anomeric center of a carbohydrate. <u>Indirect</u> formation of a substituted C-vinyl glycoside has been performed. See for exemple: S.S. Ko, J.M. Finan, M. Yonaga, and Y. Kishi, D. Uemura and Y. Hirata, <u>J.Am.Chem.Soc.</u>, <u>104</u>, 7364 (1982). For a low yield glucosylation of phenylacetylene, see R. Zelinski and R.E. Meyer, <u>J.Org.Chem.</u>, <u>32</u>, 810 (1958).
- 3. a) D.T. Connor, R.C. Greenough and M. von Strandtmann, <u>J.Org.Chem.,42</u>, 3664 (1977). The relative stereochemistry shown in this paper is incorrect. A correction has been submitted to the editor, <u>J.Org.Chem.</u>, <u>43</u>, 5027 (1978); b) N.J. Barnes, A.H.Davidson, L.R. Hughes, G. Procter and V. Rajcoomar, <u>Tetrahedron Lett.</u>, 22, 1751 (1981).
- 4. H. Ogura, H. Takahashi, and T. Itoh, <u>J.Org.Chem.</u>, <u>37</u>, 72 (1972).
- 5. E. Frainnet and C. Esclamadon, C.R. Hebd. Scéances. Acad. Sci., 254, 1814 (1962).

- 6. Prepared in 94% yield by Swern oxidation [A.J. Marcuso, S.L. Huang and D. Swern, J. Org. Chem., 43,2480(1980)] of commercially available tetrabenzylglucopyranose. See also ref. 1b.
- 7. W.S. Johnson, K. Wiedhaup, S.F. Brady and G.L. Olson, <u>J.Am.Chem.Soc.</u>, <u>96</u>, 3979 (1974).
- 8. The I.R spectrum of the anomeric mixture shows a hydroxyl band at 3350 ${\rm cm}^{-1}$ and an acetylenic band at 2250 ${\rm cm}^{-1}$.
- 9. All new compounds had satisfactory microanalytical and spectral properties . Optical rotations were measured for solutions in chloroform at 20° C, unless otherwise stated. 10. The configuration at the anomeric center was best established on the pentaacetate derived from $\frac{3}{2}$ (50%), [α]_D -12°. ¹H-N.M.R.(90MHz) : $J_{1,2}$ 9.7Hz.

- 11. For a discussion on this problem , see ref .1b.
- 12. E.F. Magoon and L.H. Slaugh, Tetrahedron, 23, 4509 (1967).
- 13. The racemic dibromoolefin $\underline{6}$ has been prepared from ethyl chrysanthemate (Aldrich)
- (1. LiAlH₄, Et₂O; 2. PCC, CH₂Cl₂; 3. Ph₃P-CBr₄, CH₂Cl₂).
- 14. Octyl- β -D-glucopyranoside and docecyl-D-maltoside are commercially available (Fluka). See the Fluka technical sheet for various references.
- 15. D. Rolf and G.R. Gray, J.Am.Chem.Soc., 104, 3539 (1982).
- 16. The lactone $\underline{10}$ has been prepared from acetobromolactose (1. Allyl alcohol, HgO, HgBr₂;
- 2. MeONa, MeOH; 3. PhCH₂Br, NaH, DMF; 4. ^tBuOK, DMSO; 5. HCl, acetone; 6. Swern oxidation).

(Received in France 15 August 1983)